Harris Energy Education Center Evolves Over the Past 25 Years

Harris Nuclear Plant

Harris Nuclear Plant

The Energy and Environmental Center at the Harris Nuclear Plant has undergone many facelifts since the mid-1980s when it first opened.  That was a few years before the Harris Plant, located about 20 miles south of downtown Raleigh, came on line in 1987.

Early on, the center focused primarily on acquainting the community with the prospect of having a nuclear plant as a neighbor. Center staff conducted educational programs on site but also spent a lot of time visiting the community while the plant was under construction.

At that time, the area around the plant was sparsely populated farmland, with only about 20,000 people residing within a 10-mile radius. Today, the surrounding population numbers about 103,000, with burgeoning residential neighborhoods in the adjacent towns of Apex, Holly Springs and Fuquay-Varina.

Harris Energy and Environmental Center

Harris Energy and Environmental Center

In addition to programs at the Energy and Environmental Center, visits often included a driving tour of the plant’s owner-controlled area. That all changed after 9/11. Lisa Tutor, a 27- year company employee who worked at the center in the mid-1990s, remembers the earlier years. “Security was always tight, but we used to give more plant tours pre-9/11 and had more flexibility,”  she said, “as long as visitors were over the age of 18.”  As a matter of fact, some nuclear plants closed their education centers — either permanently or temporarily — after 9/11 due to new federal requirements for controlling vehicular access.

The center’s latest facelift, completed in 2008, included a complete overhaul of the auditorium, lobby, exhibit area and classroom. One of the first things visitors notice is a waterfall in front of the building that is powered by four 170-watt solar panels. In addition to the basics on energy and electricity, the center’s interactive exhibits focus on emergency preparedness, security, the history of the Harris Plant, transmitting electricity, alternative energy and energy efficiency.  A How it Works exhibit even includes a built-to-scale model of the plant’s iconic 523-foot tall cooling tower.

exhibit 2

In addition to student and adult programs, the Energy and Environmental Center holds a special open house each year that includes learning stations and tours of the plant’s emergency operations facility and control room simulator, an exact replica of the plant’s control room used for training plant operators. The event drew close to 200 people of all ages in 2012. This year’s Community Day is scheduled for Saturday, September 7, from 10 a.m. to 2 p.m.

For more information about the Harris Energy and Environmental Center, visit http://www.duke-energy.com/harris or call 919-362-3261. Individual and group visits are arranged by appointment on weekdays.

Brunswick Nuclear Plant – From Humble Beginnings to Industry Changer

 

BNP Night Shot Mar 2006-3Operation for Duke Energy’s Brunswick Nuclear Plant’s (BNP) first reactor began in 1975. It was the first nuclear power plant built in North Carolina. The second unit at Brunswick became operational in 1977. The two-unit BNP is located just two miles north of Southport, N.C., and is named after its home Brunswick County. BNP produces electricity from nuclear power through two boiling water reactors and remains the only boiling water reactor (BWR) station in the Duke Energy fleet. It has a total generating capacity of 1,875 megawatts, enough to power more than 1 million homes.

BNP became operational under the parent company Carolina Power and Light (CP&L). CP&L then merged with Florida Progress, and the companies became Progress Energy. In 2012, Duke Energy and Progress Energy merged. Brunswick is one of six operating nuclear stations that make up Duke Energy’s nuclear energy fleet, with the capability of producing more than 10,000 megawatts of generating capacity in the Carolinas.

Both Duke Energy and Progress Energy have long histories of operating nuclear plants safely and reliably for more than 40 years. Duke and Progress combined a talented team of more than 7,000 nuclear professionals. BNP is jointly owned by the N.C. Eastern Municipal Power Agency and Duke Energy. Brunswick, as well as all nuclear plants, was designed and built with numerous, redundant safety systems and multiple barriers to protect the public, plant workers and the environment.

Unlike other nuclear stations in the Duke Energy fleet, BNP is a boiling water reactor (BWR). A BWR presents some differences from the more commonly found pressurized water reactors (PWR). In a BWR, the water boils inside of the actual reactor, creating steam that drives the turbine. It is a single-loop process, which causes the water flowing inside the entire system to be exposed to radioactivity. This makes maintenance slightly more challenging for nuclear workers because of the presence of radiation. However, workers clearly understand the challenges and how to manage them. A BWR is more efficient because there are fewer thermal losses (no primary system to secondary system heat transfer losses).

student-bwr

Boiling Water Reactor – courtesy of the NRC

The Brunswick team has made significant contributions to the entire nuclear industry. BNP recently developed a turbine-generator shell rotation device that is the first of its kindBNP Test in the industry. When Edward Williams, BNP project manager for Turbine Services and Dwight Knox, senior turbine/generator specialist, sat down three years ago to address a different method for rotating the unit 2 high pressure turbine, they had no idea they would be creating equipment that would forever change the nuclear industry.

The old “lift and pulley” system used to manually rotate turbine-generator shells produced years of injuries across the energy industry. This spurred the three-year long drive to create a safer and more efficient method to rotate the turbine shell, which ended in success. The design for the behemoth “shell rotating device” was created from drawings that Knox had been working on to eliminate unnecessary risk during rotating, cleaning and maintenance of the HP turbine upper half shell. Williams assisted in bringing the ideas to reality by obtaining site leadership support, funding and design creation support from GE.BNP Functional Test 45D CW

“Rotating a high pressure turbine shell once took anywhere from 18 – 24 hours, and can now be completed in about five minutes,” said Williams. “The shell rotating device significantly improves worker safety, nuclear and radiological safety, and accomplishes the job much more efficiently.” The rotator is so large that each individual shell support leg weighs up to 1,400 pounds and is specifically designed to support the 81-ton shell and bolting, which weigh as much as 1,000 pounds each and are 4 – 7 inches in diameter.

Sea Turtles Find Their Way Home, Thanks to Brunswick Employees

As beach-goers look on, Brunswick employee Chuck Nelson releases a 6-pound Kemp’s Ridley turtle back to the sea on Oak Island

Every April, sea turtles begin their migration up and down the east coast as they return to the places where they were born to lay eggs. Throughout the summer, they often venture into the Cape Fear River at Southport, N.C. – home to Duke Energy’s Brunswick Nuclear Plant.

Brunswick employees place a tracking device in a sea turtle’s flipper.

Because the plant is near the Atlantic Ocean, migrating sea turtles occasionally travel onto plant property and through several constructed barriers at the entrance to the canal which provides cooling water to the plant. These barriers help prevent marine life from entering the waterway. However, unusual tides and storms can allow animals to get around those defenses. Station personnel are trained to lookout for turtles and other creatures which may accidentally enter the canal.

When a sea turtle is found on plant property, environmental specialists capture and assess the health of the turtle. If it is injured or in need of care, they contact the state for direction to coordinate appropriate care of the animal. If it is healthy, they tag the turtle with tracking devices which allow Duke Energy and the state of North Carolina to keep tabs on the migration habits of the turtles in order to protect them.

After they are tagged, they release the turtles back into the ocean at a remote location from the plant, often to the delight of beach-going tourists.

Being good stewards of environmental resources and marine life is a top priority for Duke Energy. Plant personnel work closely with state and federal agencies to keep turtles safe from plant operations. The station has an active turtle protection and monitoring program. 

“The success of the sea turtle protection program at Brunswick is truly a team effort by every workgroup at the station,” said Marty McGowan, supervisor of the environmental team at Brunswick. “We have great support from management, and every person that is involved in this program is truly dedicated to protecting these turtles.”